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Theory and iterative methods for analysis of potentiometric titration data are presented in
this paper. The methods concern titrations of (i) weak monoprotic acids, (ii) mixtures of
weak acids with their conjugate bases (buffer solutions), (iii) mixtures of two monoprotic ac-
ids, (iv) solutions of polyprotic (di- and triprotic) acids with overlapping ionisation steps,
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and (v) mixtures of two diprotic acids. Using equations derived without approximations and
data exclusively resulting from the buffer region of a titration curve, it is possible to extract
the accurate values of the concentration(s) and thermodynamic dissociation constant(s) of
the titrated acid(s), even when the titration is stopped well before the end-point of the titra-
tion. The main principles of the iterative methods can also be applied to the evaluation of
chronoamperometric curves for various electrochemical mechanisms (ECECE, ECE, irrevers-
ible, quasi-reversible, and CE). Thus, it is possible to extract the kinetic parameters k1 and k2
of an ECECE mechanism using exclusively chronoamperometric data. The analysis of the
chronoamperometric curves for the other mechanisms (ECE, irreversible, quasi-reversible,
and CE) permits the extraction of the corresponding kinetic parameters even when the val-
ues of the diffusion coefficient D and the effective area A of the electrode are not known.
A review with 52 references.
Keywords: Acidity; Dissociation constants; Kinetics; Thermodynamics; Rate constants; Equi-
libria; Potentiometry; Chronoamperometry; Electrochemistry.

1. INTRODUCTION

Thermodynamic constants of acid-base equilibria (Kdiss) and reaction rate
constants (k) are very useful parameters for various chemical, electrochemi-
cal and technological applications. Some examples are given below.

It is known that catalytic methods can be used in analytical chemistry for
determination of heavy metals. In those methods, weak acids, mainly poly-
protic, are used. These acids, acting both as buffer and complexing agents,
may enhance the catalytic action of the metal to be determined1–6, while,
at the same time, they suppress the catalytic action caused by other metal
ions present in solution. In order to assess the masking effect caused by an
acid, it is necessary to know the stability constants of various complexes be-
tween the acid and metal ions. However, the determination of stability of
such complexes demands accurate values of the dissociation constants of
the acid used as complexing agent.

The production of compact and smooth metal deposits is an important
task in electroplating processes. Metal deposits of uniform thickness and
physical properties may be obtained if weak acids are used as additives in
the plating solution. Moreover, these additives may prevent dendritic
growth and, in some cases, can modify certain physical properties of the
electrodeposits7–10. The influence of those additives has proved to be de-
pendent on the extent of their dissociation11–13. Therefore, the dissociation
constant Kdiss appears to be a very useful parameter in explaining inhibition
effects in the growth mechanism.

Finally, there is a large number of electrochemical reactions where both
charge-transfer and chemical reactions are involved in the reaction mecha-
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nism14. Typical electrode reactions with coupled homogeneous chemical re-
actions are the so-called CE, EC, ECE, and catalytic mechanisms14,15. Such
systems are very common in organic electrochemistry. More complex
mechanisms have also been reported. One example is the ECECE mecha-
nism where three rapid charge-transfer steps are separated by two slow
chemical reactions16–18. Depending on the sequence of steps involved and
the values of the rate constants, the chemical steps may exert a dominant
effect on the polarisation behaviour of the system.

The few examples reported above clearly show that thermodynamic con-
stants of ionic equilibria or reaction rate constants are very useful parame-
ters in quantitative analyses of various chemical and/or electrochemical
systems. In this respect, techniques for accurate determination of such pa-
rameters have been developed during the last two decades in our labora-
tory. The basic principles of these methods are reviewed in the present
article.

2. SIMULTANEOUS DETERMINATION OF EQUIVALENCE VOLUMES AND
THERMODYNAMIC DISSOCIATION CONSTANTS OF WEAK ACIDS FROM
POTENTIOMETRIC TITRATION DATA

The determination of the thermodynamic dissociation constants of weak
acids can be realised by several methods. The most common procedure is
the potentiometric titration. A variety of computational methods analysing
potentiometric titration data were developed in the past few decades. Some
of these methods are reported in excellent textbooks19–21.

The majority of the methods reported in literature are valid when: (i) the
titrations are carried out under conditions of constant ionic strength and
(ii) the accurate value of the analytical concentration of the titrated acid is
known. The first condition is satisfied by addition of sufficient amounts of
a neutral salt. However, the obtained pK values under such conditions are
not free of any possible “salt effect”. On the other hand, it has been argued
in the literature that in media of high ionic strengths, even in the absence
of a salt effect, the prediction of the activities of the various ionic species
becomes inaccurate; the higher the ionic strength at which measurements
are made, the more serious the difficulties in obtaining the dissociation
constants become22. Concerning the analytical concentration of the ti-
trated acid, this quantity is usually determined from the equivalence point
of the titration curve. However, in some potentiometric titrations with a
glass electrode in mixed water–organic solvent systems, the titrations
curves of various weak acids do not show a pronounced vertical portion
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corresponding to the end-point of neutralisation. On the other hand, the
existence of multiple peaks in the immediate vicinity of the equivalence
point of differential titration curves introduces an uncertainty in the choice
of the exact value of the equivalence volume23. This behaviour could be at-
tributed to two facts. First, the process of obtaining derivatives from experi-
mental data usually results in considerably decreased accuracy24. Second, in
the vicinity of the equivalence point, the response of the glass-calomel elec-
trode set is slower than that observed in the buffer region of the same titra-
tion curve. Hence, in such solvent systems, it is very difficult to locate the
end-point of the titration and to determine (or check) the accurate value of
analytical concentration of the acid particular because of the contribution
of hydrolysis of the salt formed. In addition, for some very weak acids, the
equivalence volume does not coincide with the inflection point of the titra-
tion curves; the difference is the greater, the weaker is the acid19,25.

In an attempt to overcome these difficulties, new iterative techniques
have been developed in our laboratory, permitting simultaneous determi-
nation of the thermodynamic constant and the analytical concentration of
weak acids23,26. Thus, we have obtained theory and methods of analysis of
potentiometric titration data for (i) weak monoprotic acids, (ii) mixtures of
weak acids with their conjugate bases (buffer solutions), (iii) mixtures of
two monoprotic acids, (iv) solutions of polyprotic (di- and triprotic) acids
with overlapping ionisation steps, and (v) mixtures of two diprotic acids.
These methods, using equations derived without approximations and data
exclusively resulting from the buffer region of a titration curve, seem to be
valid throughout the acid strength range. It is noted that all these methods
can successfully be employed for titrations with absent sharp end-point, or
for the determination of analytical concentrations and pK of a moderately
weak acid in the presence of other very weak acids, the neutralisation of
which is undesirable. The latter determination can easily be done by stop-
ping the titration well before the end-point.

2.1. Potentiometric Titration of Weak Monoprotic Acids with Strong Bases

Consider a volume Vo of any weak monoprotic acid HA of initial concentra-
tion Co, which is titrated with a strong base MOH of concentration CB. As-
suming that all singly charged ions have the same activity coefficient γ1 and
that the activity coefficients of uncharged species are unity, the thermody-
namic acid constant of HA is given by Eq. (1).
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K
a

a
H A

[HA]
=

[ ]– γ1 (1)

At any point in the buffer region of the titration curve, the mass and
charge balance are expressed by Eqs (2) and (3)

C = [HA] + [A–] (2)

[H+] + [M+] = [A–] + [OH–] , (3)

where the concentrations C and [M+] can be determined from the equa-
tions:

C
C V

V V
b C V=

+
=B

o
N B e

(4)

[M+] =
C V

V V
b C VB e

o
N B+

= ,

where V is the volume of the added titrant, Ve the equivalence volume and
bN = 1/(Vo+V).

Combining these equations gives after rearrangement:
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K
a

K b C V V
a K

aH N B H
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1 1

+ −
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
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Kw is the autoprotolysis constant of the solvent used. For dilute solutions
(I < 0.1 M) the activity coefficient γ1 can be calculated from the Debye–Hückel
equation:

log γ1

2

1
= −

+
Az I

Ba I
i

o
, (6)

where A and B are constants, the values of which depend on the physical
properties of the medium27, I is the ionic strength of the solution, zi the
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charge number and ao the distance of closest approach of the ions. In prin-
ciple, ao is a function of the solvent and electrolyte, but in the practice it is
traditionally taken to be equal to 5 Å 20,28,29. The ionic strength, at any point
of the titration curve, is given by Eq. (7)20,30:

I = [M+] + [H+] = b C VN B + [H+] . (7)

To determine γ1, it is obviously necessary to know the value of [H+] =
aH/γ1 and vice versa. The values of [H+] and γ1 can be obtained from the
measured value of aH (pH = –log aH) by successive approximations. As-
suming first γ1 = 1, so that aH = [H+], it is possible to calculate I from Eq. (7),
and hence γ1 from Eq. (6). This new value of γ1 can be used to refine the
values of [H+], I and γ1. All these operations are repeated until γ1 converges
(the criterion here being less than 0.00001 difference in I, between two sub-
sequent cycles).

It is noted that Eq. (5), including the thermodynamic dissociation con-
stant of the titrated acid, is also valid under conditions of varying ionic
strength during the titration. Equation (5) has then the form

Y = Ka X . (8)

This equation predicts a linear relationship between Y and X with a slope
equal to Ka. Alternatively, the experimental confirmation of such a correla-
tion, using V and pH data, supports the assumption that the titrated acid is
a monoprotic one. Then, the thermodynamic constant Ka can be deduced,
by linear regression, from the slope of the corresponding straight line.

However, there is no way in which, without prior knowledge of Ve, the Y
vs X data may be plotted to give a linear graph. However, this is possible
with the iterative method proposed in this investigation. This procedure is
analogous to previously proposed techniques for the determination of rate
constants of SN2 reactions between ions and dipolar molecules in solvents
where the ionic reactant associates to form ion pairs31–34.

2.1.1. Iterative Method for the Determination of Ve and Ka

We assume first that the value of Ve lies in an interval (a,b). Choosing arbi-
trarily from this interval a value for Ve, it is possible to trace, by means of

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

1350 Papanastasiou, Kokkinidis:



the experimental V and pH data, the curve Y = f(X). This will approach a
straight line to the extent where the chosen value of Ve also approaches the
exact value of the equivalence volume. So, the best linearity that could be
obtained using the available experimental data, corresponds evidently to
the best approximation to the exact value of the equivalence volume. So,
by seeking the Ve value within the interval (a,b), it is possible to trace N
curves Y = f(X), N being the number of estimations of Ve values taken arbi-
trarily for these calculations. For each of these curves, the calculation of the
squared correlation coefficient R2 permits to compare the linearity of vari-
ous Y = f(X) plots and trace the curve R2 = f(Ve). This curve is expected to
present a pronounced maximum at a value of Ve equal to Ve

max that can be
considered as the best approximation to the exact value of the equivalence
volume. The slope of the corresponding to Ve

max straight line is the best ap-
proximation to the exact value of Ka. It is noted that this iterative proce-
dure is a general method that can be applied, as shown below, even to more
complicated titrations (i.e., mixtures of two acids). However, in the titra-
tions of weak monoprotic acids, Ve and Ka can be more easily determined
by the following graphical method.

2.1.2. Graphical Method for the Determination of Ve and Ka

Equation (5) can be rewritten as

y V
K

x= −e
a

1
, (9)

where

y V
C b

a
K
a

= + −








1

1γ B N
H

w

H

(10)

and

x a V
a

C b
K

a C b
= + −









H
H

B N

w

H B N

γ1 . (11)

In this treatment, it is possible to determine Ve and Ka by linear regres-
sion from the coefficients of Eq. (9). It is noted that an analogous graphical
procedure has been proposed by Johanson35. However, that approach fo-
cused rather on the determination of Ve, than of Ka. Indeed, in the Johanson
method, the proposed equation, including the apparent dissociation con-
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stant of the titrated acid, is valid under conditions where the ionic strength
remains constant during the titration. This condition is normally fulfilled
by addition of a neutral salt in sufficient amount. The difficulties arising in
the determination of the thermodynamic Ka in such media values were dis-
cussed previously.

2.2. Potentiometric Titration of a Solution Containing a Conjugate
Acid-Base Pair

Consider a volume Vo of a solution containing a conjugate acid-base pair,
where the initial analytical concentrations of the weak acid HA and its con-
jugate base are respectively equal to Co and Cb

o . This mixture can be consid-
ered as being prepared by partial neutralisation of a solution of the acid HA,
of concentration ′Co and volume Vo – Z, with Z ml of a solution of a strong
base MOH of concentration CB. At any point of the titration curve, mass
and charge balance are expressed by the equations:

[A–] + [OH–] = [M+] + [H+] (12)

TL = [HA] + [A–] , (13)

where

[M+] =
C V

V V

C V

V V
b C Z VB

o

b
o

o

o
N B+

+
+

= +( ) (14)

T
T V

V V

Z V C

V V
b C Z VL

L
o

o

o

e B

o
N B e=

+
+

+
+

= +
( )

( ) . (15)

Combining Eqs (1), (12)–(15), one obtains

y V
K

x= − ′e
a

1
. (16)

In this equation, y is again given by Eq. (10), while x′ is determined from
the following equation:

′ = + + −








x a V Z
a

C b
K

a C bH
H

B N

w

H B N

γ1 ( ) . (17)
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At any point of the titration curve, the activity coefficient γ1 can be calcu-
lated from Eq. (6), where the ionic strength is given by

I = [M+] + [H+] = b C Z VN B ( )+ + [H+] . (18)

As previously, the values of [H+] and γ1 may be obtained from the mea-
sured pH values by successive approximations.

Equation (16) predicts a linear relationship between y and x′ with a slope
equal to 1/Ka. Alternatively, the experimental confirmation of such a corre-
lation, using the V and pH data, supports the assumption that the titrated
solution is a mixture of a monoprotic acid with its conjugate base. Then, Ve
and Ka can be deduced, by linear regression, from the coefficients of Eq.
(16). This procedure can be realised by the presently proposed iterative
method.

It is assumed first that the value of Z lies in an interval (a,b). Choosing ar-
bitrarily from this interval a value for Z, it is possible to trace, using the ex-
perimental V and pH data, the curve y = f(x′). This curve will approach a
straight line to the extent where the chosen value of Z also approaches the
exact value of this parameter. Hence, the best linearity that could be ob-
tained, using the available experimental data, evidently corresponds to the
best approximation to the exact value of Z. Therefore, by seeking the Z
value within the interval (a,b), it is possible to trace N curves y = f(x′), N be-
ing the number of Z values taken for these calculations. For each of these
curves, the calculation of R2 (square of the correlation coefficient) and Syx
(standard error of the estimate) permits a comparison of the linearity of var-
ious y = f(x′) plots and trace the curves R2 = f(Z) or Syx = f(Z). These curves
must present respectively a maximum and minimum at a value of Z equal
to Zm, which can be considered as the best approximation to the exact
value of Z. The exact values of Ve and Ka can be deduced, respectively, from
the y-intercept and the slope corresponding to Zm straight line.

2.3. Potentiometric Titration of Mixtures of Two Weak Monoprotic Acids
with Strong Bases

The titration of mixtures of acids is a problem that was treated by numer-
ous workers in the past. Two acids in a mixture with each other can simply
be titrated if their pK values differ sufficiently. In such instances, the acids
are neutralised serially in accord with their pK values. As a rule of thumb, a
difference between the pK greater than 2 pK units is usually satisfactory to
distinguish, by traditional titration, the component acids. For a smaller dif-

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

Development of Iterative Methods 1353



ference between the pK values, the acids are apparently neutralised simulta-
neously and the evaluation of the titration becomes increasingly difficult,
yielding less reliable results. During the last decades, a wide variety of solu-
tions to the problem were suggested36–42. All these methods require exact
knowledge of the dissociation constants of the acids and most of them also
require the sum of the concentrations of the acids. This situation has en-
couraged us to develop a new method permitting the simultaneous deter-
mination of the thermodynamic dissociation constants and the concentra-
tions of two monoprotic acids in a mixture with each other even when the
difference between their pK values is small. In this method, which requires
only data resulting from the acid region of the titration curve, the sum of
the concentrations need not be known.

Consider a volume Vo of a mixture of n weak monoprotic acids HA1, HA2,
..., HAn of initial concentrations C1

o , C2
o , ..., Cn

o which is titrated with a solu-
tion of a strong base MOH of concentration CB. Assuming again that all sin-
gly charged ions have the same activity coefficient γ1 and that the activity
coefficients of uncharged species are unity, the dissociation constant of the
acid HAi is expressed by Eq. (19):

K
a

i
i

i

=
−

H A

[HA ]

[ ]γ1 . (19)

At any point of the acidic region of the titration curve, mass and charge
balance are expressed by the following equations:

C i
i

n

i
i

n

i
i

n

tot HA A

A M H OH

= +

= + −

=

−

=

− +

=

+

∑ ∑

∑

[ ] [ ]

[ ] [ ] [ ] [

1 1

1

− =














] F

, (20)

where

C Ci
i

n

tot = =
=
∑

1

C V
V V

C V

V V
b C V b C Vtot

o
o

o

B e

o
N tot

o
o N B e+

=
+

= = (21a)

C Ci
i

n

tot
o o= =

=
∑

1

C V

V
B e

o

(21b)
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C
K

a
b C Vi i i i

i
i= + = +







 =−[ ] [ ] [ ]HA A HA

H
N

o
o1

1γ
(21c)

F = [M+] + [H+] – [OH–] = b C V
a K

aN B
H w

H

+ −
γ γ1 1

(21d)

Combination of Eqs (19)–(21) gives

C F
C

K

a

i

ii

n

tot

H

− =
+=

∑
1

1

1

γ

. (22)

For n = 2, Eq. (22) yields

Y A A X A X= + +0 1 1 2 2 , (23)

where

A K K A K A K

Y a
F
L

X a
b C V F

L
X a

0 1 2 1 1 2 2

1
2

1 1 2

= = =

= =
−

=( )H H
N 1

o
o

Hγ γ γ

γ γ

1

1

b C C V F

L

L C F b C V V
a K

a
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1
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tot N B e
H w

H
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( )

− −

= − = − − +
1








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







. (24)

The activity coefficient γ1 introduced in the above relationships can be
determined, as previously, from Eq. (6) by successive approximations. Con-
cerning the ionic strength I, a simple calculus gives

I b C V
a

= +N B
H

γ1

. (25)

Equation (23) predicts that the relationship Y = f(X1, X2) is linear. Alter-
natively, the experimental confirmation of such a correlation, using V and
pH data, supports the assumption that the titrated solution is a mixture of
two monoprotic acids. Then, the thermodynamic acidity constants K1 and
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K2 may be obtained by a multiple linear regression method from the partial
regression coefficients.

But, despite the fact that Eq. (23) offers a theoretical basis to correlate the
results, there is no way in which, without prior knowledge of Ve (or Ctot

o )
and C1

o , the X1 and X2 data may be determined. This is possible with the it-
erative method proposed in this investigation.

This method is based on the particular property of Eq. (23) that, at the
true value of the equivalence volume Ve defined by Eq. (21b), this equation
is linear, independent of the chosen value C1

o . Indeed, in the particular case
where one uses the correct value Ve and an erroneous value for C1

o equal to
$C C C1 1 1

o o o= + δ , the variables X1 and X2 are transformed into $X1 and $X2 de-
fined by the following equations:

$
$

$X a
b C V F

L
X

a b V

L
C1 1 1

1=
−

= +H
N 1

o
o H N o

1
oγ

γ
δ (26)

$ ( $ ) $X a
b C C V F

L
X

a b V

L
C2 1 2

1=
− −

= −H
N 1

o
1
o

o H N o
1
oγ

γ
δ . (27)

Combination of Eqs (24), (26), and (27) yields

a b V

L

X X

C C C
H N o 1 2

1
o

1
o

tot
o

γ
δ

1

2
=

−
+ −

$ $

( )
(28)

and combination of Eqs (23), (26)–(28) gives

Y A A X A X= + +$ $ $ $ $
0 1 1 2 2 , (29)

where

$ $ $A A K K0 0 1 2= =
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2 1 1
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1
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It follows from these equations that, using the true value of Ve and any
value for C1

o , the relationship Y = f( $X1 , $X2 ) remains linear. However, the
corresponding coefficients $A1 and $A2 are quite different from those of Eq.
(23); the differences are greater, the greater is the value of δC1

o . In the case
when δC1

o = 0, so that the selected value for C1
o is the correct one, both Eqs

(29) and (23) are identical. This very important property may be used to de-
termine the values of Ve and C1

o as follows.
It is assumed first that Ve is unknown and that its true value lies in an in-

terval (a,b). Let $C1
o be any trial value for C1

o chosen arbitrarily from an inter-
val (a′,b′) of the possible values for this concentration. Starting from this
value, and taking from the interval (a,b) any value for Ve, it is possible to
obtain, using the experimental V and pH data, the dependence Y = f( $X1 ,
$X2 ). The latter will approach a linear relationship to the extent where the

chosen Ve also approaches the exact value of the equivalence volume. Thus,
the best linearity which can be obtained, using the available experimental
data, corresponds evidently to the best approximation to the exact value of
the equivalence volume. Hence, by seeking within the interval (a,b) the Ve
value, it is possible to obtain N relationships Y = f( $X1 , $X2 ), N being the
number of Ve values taken for these calculations. For each of these relation-
ships, the calculation of the squared multiple correlation coefficient R2 al-
lows to compare the linearity of the various Y = f( $X1 , $X2 ) variations and to
trace the curve R2 = f(Ve). This is supposed to present a pronounced maxi-
mum at a value of Ve equal to Ve

max , which can be considered the best ap-
proximation to the exact value of the equivalence volume. At this value of
Ve, the partial regression coefficients of the corresponding multiple regres-
sion equation will approach the coefficients of Eq. (23) to the extent where
the chosen value $C1

o also approaches the exact value of C1
o . In a second

step, starting from the value Ve
max , and seeking within the interval (a′,b′)

the $C1
o value, it is possible to obtain, as above, N′ relationships Y = f( $X1 ,

$X2 ), N′ being the number of $C1
o values taken for these calculations. For each

of these relationships, it is possible to calculate the ratio

R
A

A A
cf =

$

$ $
0

1 2

. (31)

This ratio may be equal to unity at a certain value of $C1
o that can be con-

sidered as the best approximation to the exact value of C1
o . Evidently, C2

o

can be calculated from Eq. (21b), while pK1 and pK2 can be estimated from
the coefficients of the corresponding multiple linear regression equation.
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2.4. Potentiometric Titration of Weak Polyprotic Acids with Strong Bases

Consider a volume Vo of a solution of a molecular polyprotic acid HnA with
overlapping ionisation steps of initial concentration Co, which is titrated
with a solution of strong base MOH of concentration CB. The titration is as-
sumed to be carried out in the acid range. In this range, the analysis of the
titration curve leads to the following equation19

$
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...

h

K
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K K

a

nK K K

a

K

a

K

n

n
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+ + +
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1
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1 2
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γ γ γ

γ
1 2
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a

K K K

a
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n
nH

2
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+ +...
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(32)

with

$h
C

= + −+ + −[M ] [H ] [OH ]
(33)

and

C
C V

V V
b C V

n
b C V=

+
=o o

o
N o o N B e

1
, (34)

where γi denotes the activity coefficient of the species (i = 0, 1, 2, ..., n) and
Ki the dissociation constants of the various ionisation steps.

For diprotic acids, Eq. (32) gives

y K K K x= − +1 1 2 (35)

with

y
Z
X

x
Y
X

= =and (36)

and
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. (37)

For dilute solutions (I < 10–1 M), the activity coefficients γ1 and γ2 can be
determined from Eq. (6), and the ionic strength I of the solution from the
following relationship30:

I b C V
a K K

a
C
D

= [M ] [H ] +[A ] = N B
H

1 H
2

2

+ + −+ + +








2 1 2

γ γ
, (38)

where

D
K

a

K K

a
= + +1 1 21

H 1 H
2

2γ γ
. (39)

The determination of Ve, K1, and K2 from Eq. (35), using V and pH data,
is possible with the iterative method proposed here. It is assumed first that
the value of Ve lies in an interval (a,b). Choosing arbitrarily from this inter-
val a value for Ve, calculation of γ1 and γ2, at any point of the titration
curve, requires of course the knowledge of the corresponding value of I. On
the other hand, I is a function of K1, K2, γ1, and γ2. Thus, determination of
γ1 and γ2 requires prior knowledge of γ1 and γ2. It appears that these calcula-
tions constitute a typical case of a vicious circle. However, γ1 and γ2 may be
obtained by successive approximations. Assuming first that γ1 and γ2 equal 1,
it is possible to determine approximate values (apparent constants) of K1,
K2 from the coefficients of Eq. (35) using the experimental V and pH data.

Starting from these values and assuming again that γ1 and γ2 equal 1, so
that aH = [H+], it is possible to calculate I at any chosen point of the titra-
tion curve, and hence γ1 and γ2 from Eq. (6). These new values γ1 and γ2 can
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be used to refine values of I and to repeat this until it converges (the crite-
rion being less than the 10–5 difference in I between two subsequent cycles).
By repeating these approximations at each point of the titration curve, it is
possible to trace the curve y = f(x) and to determine by the least-squares
method the values of K1 and K2. These new values can be used to refine the
values of K1 and K2 and to repeat this until they converge (the criterion be-
ing less than the 10–5 difference in pK1 and pK2 values between two subse-
quent cycles). The final curve y = f(x), obtained using the approximation,
approaches a straight line to the extent the chosen value of Ve also ap-
proaches the exact value of this parameter. Hence, the best linearity that
could be obtained using the available experimental data evidently corre-
sponds to the best approximation to the exact value of the equivalence vol-
ume. Therefore, by seeking within the interval (a,b) the Ve value, it is
possible to trace N curves y = f(x), N being the number of Ve values taken
for these calculations. For each of these curves, the calculation of R2 and Syx
permits the comparison of the adequacy of the fit of Eq. (35) to the experi-
mental V and pH data. At the true value of Ve, these statistics may reach a
maximum and a minimum value, respectively. Then, the exact values of K1
and K2 can be deduced, respectively, from the coefficients of the correspond-
ing straight line.

An analogous procedure can be used in order to analyse the titration
curve for triprotic acids. Indeed, in this case Eq. (32) gives

Y K K K X K K K X= + +1 1 2 1 1 2 3 2( ) ( ) (40)

with
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. (41)

As previously, the activity coefficients γ1, γ2 and γ3 can be determined
from Eq. (6), where the ionic strength is given by the following formula43:

I

b C V
a K K
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(42)

where
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. (43)

The activity coefficients γ1, γ2, and γ3 can be calculated by successive ap-
proximations, as described above.

The fact that Eq. (40) is linear, can be used for determination of Ve, K1,
K2, and K3, using the iterative method described in detail for monoprotic
and diprotic acids.

2.5. Potentiometric Titration of Mixtures of Two Weak Diprotic Acids with
Strong Bases

The titration of mixtures of two weak diprotic acids was also treated by
Purdie et al. elsewhere38. However, the Purdie method requires the knowl-
edge of the sum of the concentrations of the acids, the pK values being
known. In contrast, in the present method the sum of the concentrations
need not be known.

Consider a volume Vo of a mixture of two weak diprotic acids H2A1 and
H2A2 of initial analytical concentrations C1

o and C2
o , which is titrated with a

solution of a strong base MOH of concentration CB. Assuming that all
equally charged ions have the same activity coefficients, the dissociation
constants Ki1, Ki2 of the acid H2Ai (with i = 1, 2) are given by

K
a

i
i

i
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1=
−

H

2
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[ ]γ
, K

a
i

i

i
2

2
2

1
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−
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[ ]γ
γ

. (44)

At any point of the titration curve, a relatively simple calculation gives

Y
K

K
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and
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For dilute solutions (I < 10–1 M), the activity coefficients γ1 and γ2 can be
determined from Eq. (6). Concerning the ionic strength I, a simple calcula-
tion gives

I
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 . (48)

Equation (45) predicts a linear relationship between Y and X with a y-in-
tercept and slope equal to (K11/K21)C1

o and C2
o , respectively. Thus, the com-

position of the mixture can be deduced by linear regression from the
coefficients of Eq. (45); the acidity constants Ki1, Ki2 (with i = 1, 2) being
known. This procedure can be realised by the presently proposed iterative
method.

Assuming first that I = bNCBV + aH, so that aH = [H+] and [A1
2–], [A2

2–] ≈ 0,
it is possible to determine, from the coefficients of Eq. (45) using the exper-
imental V and pH data, approximate values of C1

o and C2
o . Starting from

these values and assuming again that aH = [H+], it is possible to calculate I
from Eq. (48) at any chosen point of the titration curve, and hence γ1 and
γ2 from Eq. (6). These new values of γ1 and γ2 can be used to refine values of
I and to repeat this until it converges (the criterion being less than 10–5

difference in I between two subsequent cycles). By repeating these approxi-
mations at each point of the titration curve, it is possible to trace the curve
Y = f(X) and to determine by least-square method the values of C1

o and C2
o .

These new values can be used to refine the values of C1
o and C2

o , and to re-
peat this until they converge (the criterion being less than the 10–12 differ-
ence in C1

o and C2
o values between two subsequent cycles).

2.6. Application of the Iterative Methods for the Analysis of Titration
Curves

To establish the reliability of the proposed procedures, first it must be
shown that they actually work by comparison with a system where the an-
swer is already known. Experimentally, this implies that the proposed ap-
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proaches, applied to previously reported systems, give reasonable (or even
better) precision in extraction of the sought parameters. In this respect, it
was considered necessary to test all the reported procedures: first, with sim-
ulated data corresponding to various values of the titration parameters and,
second, with experimental titration data. These tests have revealed that the
proposed techniques are fairly applicable23,26.

Concerning the application of the iterative methods on simulated V and
pH data, it has been found that the proposed techniques are able to extract
Ve and pK values in the case where the simulated data are free of experi-
mental errors (“ideal” data). However, more interesting from the experi-
mental viewpoint is the question of how precisely the proposed methods
are able to cope with data containing random extraneous contributions,
such as the annoying experimental “noise”. To investigate this, a Monte
Carlo technique was used, as described in detail elsewhere17. The main idea
of this procedure has been based on the observation that random experi-
mental errors often closely follow a Gaussian (or normal) distribution.
Thus, at each point (Vi and pHi) of the “ideal” titration curve pHi = f(Vi), a
number N of normally distributed random variables pHij with mean pHi
and standard deviation Si were produced. At the experimental level this im-
plies the realisation of N titrations with a precision equal to Si. At each vol-
ume Vi, the obtained N values pHij were averaged. Evidently, the mean val-
ues 〈pHij〉 would coincide with the corresponding pHi values only in the
case where the number N of the produced random variables pHij tends to
infinity. Using 〈pHij〉 data obtained for N = 4, it has been found that the
proposed techniques lead with a fair accuracy (error <1%) to Ve and pK val-
ues, even when the simulated pH data are considerably obscured by extra-
neous noise (Si = 10–2 pH unit, namely 5–10 times greater than the accuracy
of a precision instrument).

The proposed methods were also applied to various simulated titrations
curves, corresponding to different pK values, where the pH data contained
a systematic error equal to 10–2 pH unit. Experimentally, such errors are
usually introduced by an erroneous standardization of the pH meter assem-
bly. A systematic error in the pH values gives rise to relative titration errors
δVe and δpK in the values of Ve and pK, respectively, determined by δVe =
(Ve – Ve,syst)/Ve and δpK = (pK – pKsyst)/pK, where Ve,syst and pKsyst are the
values of Ve and pK determined from data containing a systematic error
equal to 10–2 pH unit. It has been found that δVe and δpK depend on the
strength of the acid that is being titrated. Also the variation of δVe as a
function of the acid strength presents a maximum in the immediate vicin-
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ity of the pK value equal to 2.6 (ref.23). However, in all cases δVe was less
than 0.5%. Hence the proposed techniques are able to extract a Ve value
with only a modest error, even when an important systematic error (δpH =
10–2 unit) obscures the pH data. It is worth noting that in the case of
diprotic acids with pKi > 2.9, the proposed techniques lead to the exact val-
ues of Ve even when the pH data contain an important systematic error
equal to 2 × 10–2 pH unit. For these acids, a rough calibration of the elec-
trode system is sufficient in order to extract the accurate value of the acid
concentration. The titration error in the pK value decreases as pK increases.
For moderately strong acids (with pK < 2.5) this error takes values greater
than 1%, δpK being equal to 10–2. In contrast, for acids with pK ≈ 4.8 (such
as the lower members of the series of aliphatic monocarboxylic acids) this
error takes values equal to ca 0.2%. For such acids the proposed techniques
are able to extract the Ve and pK values with only a modest error (δVe ≈
0.03% and δpK ≈ 0.2%), even when the pH data contain an important sys-
tematic error equal to 10–2 pH unit. Finally, for acids with pK > 3.8, it can
be shown that the titration error in the pK values is approximately equal to
the δpH error.

On the other hand, application of the iterative methods on experimental
data leads to results that are very close to the corresponding data reported
in the literature. As an example, we present here the application of the cor-
responding procedure on experimental data concerning the titration of a
mixture of two weak monoprotic acids. This mixture was prepared by mix-
ing 1.03 × 10–2 M propionic acid (30 ml) with 1.05 × 10–2 M formic acid
(20 ml). The mixture was titrated with 1 × 10–1 M NaOH. As shown in Fig.
1a, the titration curve presents only one pronounced inflection (at V ≈ 5.18
ml) corresponding to the total neutralisation of the mixture. The measure-
ments carried out in the acidic range of the mixture are given in Table I.

It is now examined whether it is possible, using these data, to extract the
desired pK and concentration values. In a first attempt R2 vs Ve was varied:
the starting value for C1

o being 2 × 10–3 M; R2 being a measure of the ade-
quacy of the fit of Eq. (29) to the titrated data. The results obtained are pre-
sented graphically in Fig. 1b. It should be emphasised that one obtains
identical results independently of the starting value for C1

o .
Figure 1 shows that the graph R2 = f(Ve) presents a pronounced maximum

in the vicinity of Ve = 5.2 ml. Further, for 5.08 ≤ Ve ≤ 5.28, it was found that
the curve R2 = f(Ve) can be perfectly fitted, by the least-square method, to
the following polynomial (with the correlation coefficient better than
0.9995):
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Consequently, the exact value of Ve, at which R2 reaches maximum value,
can be determined by solving (using any numerical method) Eq. (50).

d
d e

R
V

2

0= (50)

The root of this equation was found equal to Ve
max = 5.172 ml (Ctot

o = 1.034 ×
10–2 mol l–1), which is the best approximation to the desired value of Ve.

In a second step, starting from this value of Ve, the variation of $C1
o with

Rcf was examined. For 6.1 × 10–3 mol l–1 ≤ $C1
o ≤ 6.25 × 10–3 mol l–1, the fol-

lowing polynomial (with the square of the correlation coefficient very close
to unity):

103 $C1
o = 7.3866 – 3.7954Rcf + 4.9682Rcf

2 – 3.4283Rcf
3 + 1.2084Rcf

4 – 0.17165Rcf
5 . (51)
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TABLE I
Experimental titration data of an aqueous mixture of 1.029 × 10–2 M propionic acid (30 ml)
and 1.051 × 10–2 M formic acid (20 ml) with 1 × 10–1 M NaOH at T = 298.15 K

V, ml pH V, ml pH

1.00 3.639 2.59 4.432

1.17 3.727 2.84 4.545

1.31 3.800 3.04 4.638

1.48 3.888 3.20 4.710

1.65 3.975 3.35 4.778

1.80 4.050 3.52 4.860

1.97 4.133 3.67 4.932

2.12 4.207 3.87 5.036

2.27 4.278 4.01 5.107

2.42 4.348



From this polynomial and for Rcf = 1 one obtains $C1
o = 6.168 × 10–3 mol l–1.

This value is the best approximation to the exact value of C1
o . Also it results

that C2
o = Ctot

o – C1
o = 4.176 × 10–3 mol l–1. These values are in excellent

agreement with the expected values of C1
o (= 30 × 0.1029/50 = 6.174 × 10–3

mol l–1) and C2
o (= 20 × 0.01051/50 = 4.204 × 10–3 mol l–1). Finally, using

the determined values of Ve and C1
o , one obtains from the coefficients of

Eq. (23) the values pK1 = 4.877 and pK2 = 3.742. These values are very close
to the corresponding values (4.874 and 3.752, at 25 °C) reported in the lit-
erature20,27.
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FIG. 1
Titration curve of an aqueous mixture of 1.029 × 10–2 M propionic acid (30 ml) and 1.051 ×
10–2 M formic acid (20 ml) with 1 × 10–1 M NaOH (a), and variation of R2 with Ve (b)
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3. DETERMINATION OF KINETIC PARAMETERS FROM CHRONOAMPEROMETRIC
DATA

3.1. Theoretical Background

Potential step chronoamperometry has proved to be a valuable technique
for the study of various electrochemical reactions because of the relative
simplicity of the mathematics involved in solving the appropriate diffusion
equations. Some typical examples, for which the application of the
above-mentioned technique leads to analytical solutions relating the cur-
rent i with time t, are the reaction schemes (I)–(V).

The theoretical treatment of the so-called ECECE mechanism (reaction
scheme (I)) for potential step chronoamperometry at a planar electrode, the
initial and boundary value problems, treated by means of the Laplace trans-
form method, led to the following relation16:

i
n FAD c

n

n
t

n

n
t
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1 2

2

1
1

3

1
21

1
/

( ) ( ) ,
A
b

= + +
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



Φ Φ

π
(52)

where cA
b is the bulk concentration of species A, F is Faraday constant, A is

the electrode area, and D is the assumed common diffusion coefficient of
all the species involved in the ECECE sequence. The functions Φ1(t) and
Φ2(t) are defined by the relations:
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and I0(x) is the modified Bessel function of zero order, x being the argu-
ment {(k1 – k2)/2}(t – y).

For the ECE mechanism (reaction scheme (II), the current–time relation is
given by (ref.14):
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The chronoamperometric relations for the reaction schemes (III) (irrevers-
ible mechanism), (IV) (quasi-reversible mechanism) and (V) (CE mecha-
nism) have the respective forms14

i nFAc k t t= o
b

f 1erfc(exp( ) )β β1
2 (56)

i nFAc k t t= o
b

f 2erfc(exp( ) )β β2
2 (57)

i nF c A D t t= β β β3 3
2

o
b

3erfc(exp( ) ) , (58)

where β1 = kf/ D, β2 = (kf + kb)/ D, β3 = k1/ k–1 , provided that k–1 >> k1, and
D is the assumed common diffusion coefficient of all the species involved
in reaction schemes (III)–(V).

The reaction schemes (III)–(V) share a chronoamperometric response of
the form

i i t t= o erfcexp( ) ( ) ,β β2 (59)

where io is the initial current, usually not accessible by direct measurement.
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Equation (52) can be applied for studying the kinetics of homogeneous
chemical reactions involved in the ECECE mechanism. However, because of
its non-linear form, the determination of the rate constants from i = f(t)
curves using classic numerical methods appears to be very difficult. That
was the reason why in a previous investigation16 we chose alternative
methods for the determination of the rate constants of the intervening
chemical reactions in the ECECE mechanism of 1,4-benzoquinone dioxime
(p-BQD). Nevertheless, it is not always possible to find such alternative
methods for determining the rate constants in any ECECE mechanism.

Equation (59) also has a non-linear form. Thus, the determination of the
corresponding rate constants from i = f(t) plots by using traditional numeri-
cal methods without prior knowledge of A, D or io appears to be very diffi-
cult. For this reason, various approximate methods for the determination of
the rate constants have been suggested in the literature44–48. These meth-
ods, using either disc or ring-disc measurements, or chronoamperometric
data at short or long times, allow to evaluate the kinetic parameters with
only low precision. Of course, there exist numerical methods that can ex-
tract from Eq. (59) the accurate values of the corresponding kinetic parame-
ter14,49. However, these methods (based on the linearisation of the chrono-
amperometric data either in Laplace space or by calculating the semi-
integral of the current) are of a complexity that does not appeal to the aver-
age chemist. An alternative technique to these methods has been devised in
the literature50. However, this procedure is of experimental complexity,
since it requires combination of chronoamperometric and chronocoulo-
metric data.

This situation has encouraged us to develop new iterative methods, based
on Eqs (52), (55), and (59) that allow determination of the exact values for
the corresponding rate constants exclusively from chronoamperometric
data15–17.

3.2. Determination of the Rate Constants k1 and k2 of an ECECE
Mechanism

This method is based on the main principles of a previous one31,51 that was
used for the determination of the rate constants for two competitive paral-
lel reactions preceded by an equilibrium between two of the reactants.

Equation (52) can be rearranged to give the following form:

Y = bX , (60)

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

Development of Iterative Methods 1369



where

Y
i t

n FAD c
X

n

n
t

n

n
t= = + +

1
1 2

2

1
1

3

1
21

/
, ( ) ( ) .

A
b

Φ Φ (61)

Equation (60) predicts a linear relationship between Y and X with a gradi-
ent equal to 1/ π. Alternatively, the experimental confirmation of such a
correlation supports the assumption that the reduction under consideration
does, in fact, follow an ECECE mechanism.

However, despite the fact that plots of Y vs X offer a theoretical basis for
the correlation of the results, their practical application may be regarded as
fairly limited. Indeed, calculation of X at various times requires estimates of
k1 and k2 that are generally not available.

However, as mentioned above, approximate values of these constants
could be obtained in certain instances by alternative methods. We examine
now whether it is possible, starting from these values, to determine the ex-
act k1 and k2 values, using only experimental chronoamperometric data.

We assume first that the values of k1 and k2, a priori accessible, are defined
by a set S including an infinity of elements. Each element of S corresponds
to a pair of values of k1 and k2. Consequently, the various elements of S de-
fine various electrochemical reactions following the ECECE mechanism.
Using an element of S (namely a pair of k1 and k2 values chosen arbitrarily),
it is possible to trace, using the chronoamperometric data, the curve Y =
f(X). This will approach a straight line to the extent where the chosen val-
ues of the rate constants also approach the exact k1 and k2 values. Thus, the
best linearity that could be obtained, using the available experimental data,
corresponds evidently to the best approximation to the exact values of the
sought rate constants.

However, among infinity of elements of S, there is of course one corre-
sponding to the electrochemical reaction under consideration. In an at-
tempt to determine the values of the rate constants corresponding to this
element, we assume that we have an initial estimation of either k1 or k2. Let
k1

o be an approximate value of k1. This value can be obtained by an alterna-
tive method. Starting from this value, it is possible to trace N curves Y =
f(X), N being the number of k2 values taken for these calculations. For each
of these curves, the calculation of the squared correlation coefficient R2 al-
lows to compare the linearity of the various Y = f(X) plots and to trace the
curve R2 = f(k2). This curve is expected to reach a pronounced maximum at
a value of k2 equal to k2

1 , which can be considered as a first approximation
to the exact k2 value.
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In a second step, starting from k2
1 , it is possible to trace the curve R2 =

f(k1) and to determine, in the same way, the first approximation k1
1 to the k1

value.
This procedure can be repeated n times in order to obtain the sequences {kn

1 }
and {kn

2 } that converge to the limiting values k1
lim and k2

lim , expressing the
best approximation to the exact values of the corresponding rate constants.
It should be noted that as n grows, k2

1 and kn
2 are expected to be increas-

ingly better estimates of the desired rate constants. One stops the iterations
when sufficient accuracy is obtained.

3.3. Determination of the Rate Constants of ECE, Irreversible,
Quasi-Reversible, and CE Mechanisms

Equations (55) and (59) can be written as

y = Bx , (62)

where (for Eq. (55))

y
i t
n Fc

x
n

n
B A Dkt= = + − =−π

1

2

1

1 1
A
b

e, ( ) , (63)

(for Eq. (59))

y i x t B i= = =, exp( ) ) , .β β2 erfc( t o (64)

Equation (62) predicts a linear relationship between y and x. As in the
case of the ECECE mechanism, the experimental confirmation of such a
correlation, using the above equations, supports the assumption that the
reaction under consideration follows, indeed, the corresponding mecha-
nism. However, there is no way in which, without prior knowledge of the
kinetic parameters, the y vs x plots give a linear graph. This is possible with
the proposed iterative method.

We assume first that the value of the corresponding kinetic parameter k′
(k′ denoting k or β) lies in an interval (a,b). Choosing arbitrarily from this
interval a value for k′, it is possible to trace, using the chronoamperometric
data, the curve y = f(x). This will approach a straight line to the extent
where the chosen value for k′ also approaches the exact value of the corre-
sponding kinetic parameter. Thus, the best linearity that could be obtained,
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using the available experimental data, corresponds evidently to the best ap-
proximation to the exact value of k′. Hence, by seeking within the interval
(a,b) the k′ value, it is possible to trace N curves y = f(x), N being the num-
ber of k′ values taken for these calculations. For each of these curves, the
calculation of the squared correlation coefficient R2 allows to compare the
linearity of various y = f(x) plots and trace the curve R2 = f(k′). This curve is
expected to present a pronounced maximum at a value of k′ equal to ′kmax ,
which can be considered as the best approximation to the exact value of
the kinetic parameter. The slope of the straight line corresponding to ′kmax is
the best approximation to the exact value of B (being equal to A D or io).

3.4. Application of the Iterative Methods for Determination of Kinetic
Parameters from Chronoamperometric Data

All the methods described herein were applied to simulated chronoampero-
metric data, either without or with extraneous “noise” (Monte Carlo simu-
lated data), for different values of the corresponding kinetic parameters15,17.
The Monte Carlo data were produced as described previously in the case of
the analysis of titration data. The obtained results showed that these proce-
dures are able to extract the kinetic parameters with only modest errors,
even when the faradaic data are considerably obscured by random extrane-
ous contributions, such as annoying experimental “noise”. The reported
techniques were also successfully applied to experimental data15,17. As an
example, we present here the determination of k1 and k2 of an ECECE
mechanism, using experimental data concerning the reduction of
1,2-benzoquinone dioxime (10–3 M) in aqueous 5 × 10–1 M HClO4 and 2.5 ×
10–4 M Bi(ClO4)3 solution at a Pt electrode modified by underpotential de-
position (upd) of Bi at 25 °C. The reduction of 1,2-benzoquinone dioxime
(o-BQD) at a Pt/Bi(upd) modified electrodes in acidic solutions proceeds via
the mechanism shown in Scheme 1 18.
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Mean values of i obtained from three independent experiments are given
in Table II. The values of Y calculated from Eq. (61) are also listed in Table II.
In these calculations, the effective (real) electrode area A and the diffusion
coefficient D were taken equal to 0.136 cm2 and 6.80 × 10–6 cm2 s–1, respec-
tively52. Using the values of Y reported in Table II, the following smoothing
function was found by the least-square method (R2 > 0.9993):

Y = 0.65249 + 10.786t – 69.413t2 + 259.55t3 – 497.54t4 + 375.53t5 .(65)

Smoothed Y values (Ysm), calculated from Eq. (65), were used in the appli-
cation of the iterative procedure for the determination of the rate constants
k1 and k2. It is noted that the Ysm values, used in the iterations, ranged from
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TABLE II
Experimental current values for the reduction of o-BQD at a Pt/Bi(upd) electrode in aqueous
acid solutions and the values of Y calculated from Eq. (61) at T = 298.15 K

t, s i, µA Y

0.05 320.39 1.04615

0.08 287.72 1.18834

0.10 271.05 1.25164

0.13 251.01 1.32157

0.15 239.62 1.35517

0.18 227.51 1.40952

0.20 220.27 1.43845

0.23 209.48 1.46704

0.25 204.47 1.49289

0.28 195.52 1.51079

0.30 191.70 1.53322

0.33 184.48 1.54751

0.35 180.63 1.56042

0.38 174.77 1.57322

0.40 170.99 1.57917



0.05 to 0.35 s, since in this region the process under consideration shows a
pronounced kinetic character.

The rate constants of the coupled chemical reactions could be deter-
mined exclusively from chronoamperometric data (the iterative method
reaches the exact values of k1 and k2 even if one starts from very poor esti-
mates of either k1 or k2). However, approximate values at least for one rate
constant should be useful, since the number of iterations required is
smaller when the starting value is closer to its real magnitude. For this rea-
son, the approximate value k1 = 26.14 s–1, determined previously18, was
used as the starting value of the iterative technique. The {kn

1 } and {kn
2 } se-

quences are summarised in Table III. It should be noted that in all cases the
variations R2 = f(kj) (with j = 1 or 2) showed pronounced maxima, such as
plotted in Fig. 2a.

As can be deduced from Table III, one practically reaches the desired val-
ues after six iterations. The mean value obtained (for n > 6) was equal to kn

1

= 28.25 ± 0.01 s–1 and kn
2 = 7.488 ± 0.003 s–1. The small fluctuations ob-

served around the limiting values for n > 6 can be attributed to round-off
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TABLE III
Successive approximations to k1 and k2 values obtained by the iterative method for an
ECECE mechanism and using the experimental data reported in Table II. T = 298.15 K

n kn
1 , s–1 kn

2 , s–1

0 26.14

1 26.738 6.185

2 27.411 6.621

3 27.892 7.065

4 28.126 7.331

5 28.210 7.437

6 28.239 7.474

7 28.249 7.484

8 28.247 7.489

9 28.254 7.487

10 28.258 7.490

11 28.246 7.492



errors, introduced mainly in the determination of the maxima of the R2 =
f(kj) curves.

To test the exactness of the values derived using Eq. (52), the curve i = f(t)
was traced and compared with experimental i values. The agreement is ex-
cellent (Fig. 2b).

On the other hand, the determination of X as a function of t, using Eq.
(61) and the values for k1 and k2 extracted above, allows to correlate the
variation of Y with X. This variation was found to be perfectly linear, the
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FIG. 2
Chronoamperometric response for the reduction of o-BQD at a Pt/Bi(upd) electrode in aqueous
acid solution. Variation of R2 with k2 (k1 = k1

o = 26.14 s–1) (a), and variation of the current with
time (b). Theoretical curve calculated using k1 = 28.25 s–1 and k2 = 7.488 s–1 ( ), experimental
values (❏ )
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corresponding correlation coefficient being very close to unity. The slope b
of this dependence, found equal to 0.5611, is very close to the theoretical
one (b = 1/ π = 0.5642). This behaviour provides further experimental evi-
dence that the reduction of o-BQD at a Pt/Bi(upd) electrode proceeds via an
ECECE mechanism.

4. CONCLUSIONS

Theory and iterative methods for analysis of potentiometric titration data
are presented in this paper. The proposed methods, using equations derived
without approximations, and data exclusively resulting from the buffer re-
gion of a titration curve, enable the prediction of the accurate values of the
concentration(s) and the thermodynamic dissociation constant(s) of the ti-
trated acid(s), even if the titration is stopped well before the end-point of
the titration. All these methods can successfully be applied in titrations
without any sharp end-point, or for the determination of the analytical
concentration and the thermodynamic pK value for a moderately weak acid
in the presence of other very weak acids, the neutralisation of which is un-
desirable. The last determination can easily be done by stopping the titra-
tion well before the end-point. The majority of the methods reported in the
literature are valid when (i) the titrations are carried out under conditions
of constant ionic strength, and (ii) the accurate value of the analytical con-
centration of the titrated acid is known. On the contrary, the proposed pro-
cedures described above are valid even when (i) the titrations are performed
under conditions of varying ionic strength (but, there is no reason why the
analysis would not be carried out under conditions of constant ionic
strength), and (ii) the accurate value of the analytical concentration of the
titrated acid is not known. Hence, the addition of a neutral salt to the ti-
trated solution to keep the ionic strength constant, is not necessary. There-
fore, the pK values obtained in media of a low ionic strength are free of any
possible “salt effect”. Another advantage of the proposed techniques, in
comparison to other approaches in the literature, is the simultaneous deter-
mination of the accurate values of the analytical concentration and the cor-
responding thermodynamic pK value of the titrated acid. Indeed, thermo-
dynamic pK values being independent of the concentration could be con-
sidered as the “fingerprint” of the titrated acid. Thus, from the comparison
of the determined pK values with the tabulated ones it is possible to iden-
tify the titrated acid.

Iterative methods for evaluating the chronoamperometric curves of vari-
ous electrochemical mechanisms are proposed. Thus, in the case of an
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ECECE mechanism, the proposed method allows to determine the exact
values of the corresponding rate constants k1 and k2. The test of this proce-
dure, using simulated ideal data (free of any extraneous “noise”), showed
that this method is fairly well applicable. Application of the iterative tech-
nique to Monte Carlo simulated data revealed that the proposed procedure
is also able to extract kinetic parameters even if the faradaic data are con-
siderably obscured by “noise”. Finally, this method was successfully applied
to experimental chronoamperometric data.

The proposed method for the analysis of chronoamperometric data of
various electrochemical mechanisms (ECE, irreversible, quasi-reversible,
and CE mechanisms) is also applicable even if the faradaic data are consid-
erably obscured by gaussian “noise”. The main advantage of this iterative
method, in comparison with other methods currently in use, is that the ac-
curate values of the rate constants of the coupled chemical reactions in the
CE and ECE mechanisms can be obtained directly from the i–t data even if
the parameters A (the effective electrode area) and D are not known. These
parameters are usually not available.
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